Tugas Nmap

Rabu, 13 Januari 2010

Nmap (Network Mapper)
sebuah aplikasi atau tools yang dibuat oleh Gordon Lyon. Atau lebih dikenal dengan nama Fyodor Vaskovich. Aplikasi ini digunakan untuk meng-audit jaringan yang ada. Dengan menggunakan tool ini, kita dapat melihat host yang aktif, port yang terbuka, Sistem Operasi yang digunakan, dan feature-feature scanning lainnya. Pada awalnya, Nmap hanya bisa berjalan di sistem operasi Linux, namun dalam perkembangannya sekarang ini, hampir semua sistem operasi bisa menjalankan Nmap.

nmap di versi terbaru sekarang ini sudah mempunyai fitur yang sangat baik sekali, bahkan bisa dikatakan lengkap dan juga sudah ada yang versi GUI nya. Ini sangat membantu sekali pada saat kita memulai scanning atau mulai “mengintip” port yang terbuka di komputer target. NMAP memiliki banyak dalam hal teknik sanning, seperti: UDP, TCP Connect(), TCP SYN (half open), ftp proxy (bounce attack), ICMP (ping sweep), FIN, ACK sweep, Xmas tree, Null scan, dll lah.. NMAP juga mempunyai kelebihan untuk mengetahui OS apa yang dipakai oleh target di versi terbarunya bisa spoof IP dan MAC ini berguna agar IP dan MAC kita tidak bisa diketahui (anonimitas di jaringan).

Aplikasi Nmap pada web twilight.ning.com dan ilmukomputer.com

1.www.twilight.ning.com





2.www.ilmukomputer.com



IP ADDRESS

Alamat IP (Internet Protocol Address atau sering disingkat IP) adalah deretan angka biner antar 32-bit sampai 128-bit yang dipakai sebagai alamat identifikasi untuk tiap komputer host dalam jaringan Internet. Panjang dari angka ini adalah 32-bit (untuk IPv4 atau IP versi 4), dan 128-bit (untuk IPv6 atau IP versi 6) yang menunjukkan alamat dari komputer tersebut pada jaringan Internet berbasis TCP/IP.

Alamat IP versi 4 (sering disebut dengan Alamat IPv4)
sebuah jenis pengalamatan jaringan yang digunakan di dalam protokol jaringan TCP/IP yang menggunakan protokol IP versi 4. Panjang totalnya adalah 32-bit, dan secara teoritis dapat mengalamati hingga 4 miliar host komputer di seluruh dunia. Contoh alamat IP versi 4 adalah 192.168.0.3.

Alamat IP versi 6 (sering disebut sebagai alamat IPv6)
sebuah jenis pengalamatan jaringan yang digunakan di dalam protokol jaringan TCP/IP yang menggunakan protokol IP versi 6. Panjang totalnya adalah 128-bit, dan secara teoritis dapat mengalamati hingga 2128=3,4 x 1038 host komputer di seluruh dunia. Contoh alamat IP versi 6 adalah 21DA:00D3:0000:2F3B:02AA:00FF:FE28:9C5A.

SUBNETTING

Pengertian subneting dan perhitungannya

Subnetting adalah sebuah teknik yang mengizinkan para administrator jaringan untuk memanfaatkan 32 bit IP address yang tersedia dengan lebih efisien. Teknik subnetting membuat skala jaringan lebih luas dan tidak dibatas oleh kelas-kelas IP (IP Classes) A, B, dan C yang sudah diatur. Dengan subnetting, anda bisa membuat network dengan batasan host yang lebih realistis sesuai kebutuhan.

Subnetting menyediakan cara yang lebih fleksibel untuk menentukan bagian mana dari sebuah 32 bit IP adddress yang mewakili netword ID dan bagian mana yang mewakili host ID.

Dengan kelas-kelas IP address standar, hanya 3 kemungkinan network ID yang tersedia; 8 bit untuk kelas A, 16 bit untuk kelas B, dan 24 bit untuk kelas C. Subnetting mengizinkan anda memilih angka bit acak (arbitrary number) untuk digunakan sebagai network ID.

Dua alasan utama melakukan subnetting:

* Mengalokasikan IP address yang terbatas supaya lebih efisien. Jika internet terbatas oleh alamat-alamat di kelas A, B, dan C, tiap network akan memliki 254, 65.000, atau 16 juta IP address untuk host devicenya. Walaupun terdapat banyak network dengan jumlah host lebih dari 254, namun hanya sedikit network (kalau tidak mau dibilang ada) yang memiliki host sebanyak 65.000 atau 16 juta. Dan network yang memiliki lebih dari 254 device akan membutuhkan alokasi kelas B dan mungkin akan menghamburkan percuma sekitar 10 ribuan IP address.

* Alasan kedua adalah, walaupun sebuah organisasi memiliki ribuan host device, mengoperasikan semua device tersebut di dalam network ID yang sama akan memperlambat network. Cara TCP/IP bekerja mengatur agar semua komputer dengan network ID yang sama harus berada di physical network yang sama juga. Physical network memiliki domain broadcast yang sama, yang berarti sebuah medium network harus membawa semua traffic untuk network. Karena alasan kinerja, network biasanya disegmentasikan ke dalam domain broadcast yang lebih kecil – bahkan lebih kecil – dari Class C address.

Subnets

Subnet adalah network yang berada di dalam sebuah network lain (Class A, B, dan C). Subnets dibuat menggunakan satu atau lebih bit-bit di dalam host Class A, B, atau C untuk memperlebar network ID. Jika standar network ID adalah 8, 16, dan 24 bit, maka subnet bisa memiliki panjang network ID yang berbeda-beda.?????????????????????????

Gambar diatas menunjukkan sebuah network sebelum dan sesudah subnetting diaplikasikan. Di dalam jaringan yang tidak subnetkan, network ditugaskan ke dalam Address di Class B 144.28.0.0. Semua device di dalam network ini harus berbagi domain broadcast yang sama.

Di network yang ke dua, empat bit pertama host ID digunakan untuk memisahkan network ke dalam dua bagian kecil network – diidentifikasikan dengan subnet 16 dan 32. Bagi dunia luar (di sisi luar router), kedua network ini tetap akan tampak seperti sebuah network dengan IP 144.28.0.0. Sebagai contoh, dunia luar menganggap device di 144.28.16.22 dimiliki oleh jaringan 144.28.0.0. Sehingga, paket yang dikirim ke device ini dikirim ke router di 144.28.0.0. Router kemudian melihat bagian subnet dari host ID untuk memutuskan apakah paket diteruskan ke subnet 16 atau 32.
Subnet Mask

Agar subnet dapat bekerja, router harus diberi tahu bagian mana dari host ID yang digunakan untuk network ID subnet. Cara ini diperoleh dengan menggunakan angka 32 bit lain, yang dikenal dengan subnet mask. Bit IP address yang mewakili network ID tampil dengan angka 1 di dalam mask, dan bit IP address yang menjadi host ID tampil dengan angka 0 di dalam mask. Jadi biasanya, sebuah subnet mask memiliki deretan angka-angka 1 di sebelah kiri, kemudian diikuti dengan deretan angka 0.

Sebagai contoh, subnet mask untuk subnet di Picture 1 – dimana network ID yang berisi 16 bit network ID ditambah tambahan 4-bit subnet ID – terlihat seperti ini:

11111111 11111111 11110000 00000000

Atau dengan kata lain, 20 bit pertama adalah 1, dan sisanya 12 bit adalah 0. Jadi, network ID memiliki panjang 20 bit, dan bagian host ID yang telah disubnetkan memiliki panjang 12 bit.

Untuk menentukan network ID dari sebuah IP address, router harus memiliki kedua IP address dan subnet masknya. Router kemudian menjalankan operasi logika AND di IP address dan mengekstrak (menghasilkan) network ID. Untuk menjalankan operasi logika AND, tiap bit di dalam IP address dibandingkan dengan bit subnet mask. Jika kedua bit 1, maka hasilnya adalah, Jika salah satu bit 0, maka hasilnya adalah 0.

Sebagai contoh, berikut ini adalah contoh network address yang di hasilkan dari IP address menggunakan 20-bit subnet mask dari contoh sebelumnya.
144. 28. 16. 17.

IP address (biner) 10010000 00011100 00100000 00001001
Subnet mask 11111111 11111111 11110000 00000000
Network ID 10010000 00011100 00100000 00000000

144. 28. 16. 0

Jadi network ID untuk subnet ini adalah 144.28.16.0

Subnet mask, seperti juga IP address ditulis menggunakan notasi desimal bertitik (dotted decimal notation). Jadi 20-bit subnet mask seperti contoh diatas bisa dituliskan seperti ini: 255.255.240.0
Subnet mask:
11111111 11111111 11110000 00000000
255. 255. 240. 0.

Jangan bingung membedakan antara subnet mask dengan IP address. Sebuah subnet mask tidak mewakili sebuah device atau network di internet. Cuma menandakan bagian mana dari IP address yang digunakan untuk menentukan network ID. Anda dapat langsung dengan mudah mengenali subnet mask, karena octet pertama pasti 255, 255 bukanlah octet yang valid untuk IP address class.

Aturan-aturan Dalam Membuat Subnet mask

* Angka minimal untuk network ID adalah 8 bit. Sehingga, octet pertama dari subnet pasti 255.

* Angka maximal untuk network ID adalah 30 bit. Anda harus menyisakan sedikitnya 2 bit untuk host ID, untuk mengizinkan paling tidak 2 host. Jika anda menggunakan seluruh 32 bit untuk network ID, maka tidak akan tersisa untuk host ID. Ya, pastilah nggak akan bisa. Menyisakan 1 bit juga tidak akan bisa. Hal itu disebabkan sebuah host ID yang semuanya berisi angka 1 digunakan untuk broadcast address dan semua 0 digunakan untuk mengacu kepada network itu sendiri. Jadi, jika anda menggunakan 31 bit untuk network ID dan menyisakan hanya 1 bit untuk host ID, (host ID 1 digunakan untuk broadcast address dan host ID 0 adalah network itu sendiri) maka tidak akan ada ruang untuk host sebenarnya. Makanya maximum network ID adalah 30 bit.

* Karena network ID selalu disusun oleh deretan angka-angka 1, hanya 9 nilai saja yang mungkin digunakan di tiap octet subnet mask (termasuk 0). Tabel berikut ini adalah kemungkinan nilai-nilai yang berasal dari 9 bit.

Binary Octet Decimal
00000000 0
10000000 128
11000000 192
11100000 224
11110000 240
11111000 248
11111100 252
11111110 254
11111111 255
Private dan Public Address

Host apapun dengan koneksi langsung ke internet harus memiliki IP address unik global. Tapi, tidak semua host terkoneksi langsung ke internet. Beberapa host berada di dalam network yang tidak terkoneksi ke internet. Beberapa host terlindungi firewall, sehingga koneksi internet mereka tidak secara langsung.

Beberapa blok IP address khusus digunakan untuk private network atau network yang terlindungi oleh firewall. Terdapat tiga jangkauan (range) untuk IP address tersebut seperti di tabel berikut ini. Jika anda ingin menciptakan jaringan private TCP/IP, gunakan IP address di tabel ini.
CIDR Subnet Mask Address Range
10.0.0.0/8 255.0.0.0 10.0.0.1 – 10.255.255.254
172.16.0.0/12 255.255.240.0 172.16.1.1 – 172.31.255.254
192.168.0.0/16 255.255.0.0 192.168.0.1 – 192.168.255.254

Sumber:X-manyciber site

ROUTING


Routing, adalah sebuah proses untuk meneruskan paket-paket jaringan dari satu jaringan ke jaringan lainnya melalui sebuah internetwork. Routing juga dapat merujuk kepada sebuah metode penggabungan beberapa jaringan sehingga paket-paket data dapat hinggap dari satu jaringan ke jaringan selanjutnya. Untuk melakukan hal ini, digunakanlah sebuah perangkat jaringan yang disebut sebagai router. Router-router tersebut akan menerima paket-paket yang ditujukan ke jaringan di luar jaringan yang pertama, dan akan meneruskan paket yang ia terima kepada router lainnya hingga sampai kepada tujuannya.

JENIS-JENIS TOPOLOGI JARINGAN

a. Topologi Mesh/mata jala
Keuntungan dari jaringan mata jala
Tiap sentral mempunyai derajat yang sama
Tiap sentral mempunyai hubungan langsung
Peralatan switching dapat lebih sederhana
Syarat saluran lebih murah
Bila salah satu saluran penghubung terganggu, maka hubungan
antar sentral masih tetap dapat dilakukan melalui saluran yang
lain.
Kerugian jaringan mata jala
Efisiensi saluran rendah karena memerlukan banyak berkas
Konsentrasi saluran agak rendah
Jaringan mata jala yang satu dengan yang lain sulit dihubungkan

b. Topologi Star/bintang
Keuntungan jaringan bintang
– Cocok untuk jaringan dengan volume trafik yang rendah
– Trafik ke sentral lain (antar sentral) dari suatu sentral
dikonsentrasikan melalui sentral transit, sehingga sentral
transit biasanya mempunyai derajat yang lebih tinggi.
– Jumlah berkas saluran S linear terhadap jumlah sentral N
– Konsentrasi saluran besar
– Efisiensi saluran tinggi
Kelemahan jaringan bintang
– Bila sentral transit mengalami gangguan (break down) maka
semua sentral di bawahnya akan terisolir (tidak dapat saling
berhubungan)

c. Topologi Ring/cincin
Keuntungan jaringan cincin
– Suatu jaringan cincin mudah sekali di konfigurasi dan di install.
– Dalam jaringan secara normal sinyal disirkulasikan setiap waktu. Bila
node tidak menerima sinyal untuk waktu tertentu menunjukan adanya
kesalahan sederhana pada cincin tersebut. Bila ada node yang
mengalami kerusakan maka dengan mudah dapat diisolasi sehingga
tidak menggangu pada kinerja sistem secara keseluruhan.
Kelemahan jaringan cincin
– Tetapi bila satu titik tidak berfungsi maka seluruh jaringan tidak akan
berfungsi. Untuk menghindari kelemahan tersebut biasanya
menggunakan cincin ganda.
– Kelemahan yang lainnya adalah trafiknya hanya bisa satu jalur, tidak
cocok digunakan dengan titik yang banyak

d. Topologi Bus
Keuntungan jaringan bus
• Mudah untuk diinstal
• Menggunakan panjang kabel yang lebih pendek dibandingkan
topologi lainnya.
Kelemahannya jaringan bus
• Topologi ini tidak flesibel karena penambahan satu titik
menyebabkan perubahan konfigurasi dan penambahan pajang
rata-rata kabel.
• Pengisolasian kerusakan sangat sulit dilaksanakan karena akan
menganggu kinerja jaringan.
• Bila bus mengalami kerusakan maka seluruh titik tidak berfungsi

e. Topologi Tree/pohon
Jaringan pohon dapat diturukan dari topologi bintang yang
berirarki membentuk sebuah percabangan pohon.
Hanya beberapa node yang langsung berhubungan
dengan sentral pusat. Sentral pusat berisi repater yang
menerima sinyal informasi yang masuk dan
meregenerate ke sentral dibawahnya yang dituju.
Sentral pusat merupakan sentral yang aktif sementara
sentral dibawahnya adalah sentral yang pasif.
Kelebihan dan kelemahannya sama dengan topologi
jaringan bintang

LAN, MAN dan WAN

LAN (Local Area Network)

Local Area Network adalah jaringan lokal yang dibuat pada area tertutup. Misalkan dalam suatu gedung atau dalam suatu ruangan.
Kadangkala jaringan lokal disebut juga jaringan privat.
LAN biasanya digunakan untuk jaringan kecil yang menggunakan resource bersama-sama, seperti penggunaan printer bersama, dan penggunaan media penyimpanan bersama.


MAN (Metropolitan Area Network)

Metropolitan Area Network menggunakan metode yang sama dengan LAN namun daerah cakupannya lebih luas. Daerah cakupan MAN bisa satu RW, beberapa kantor yang berada dalam komplek yang sama, satu kota, bahkan satu provinsi.
Dapat dikatakan MAN merupakan pengembangan dari LAN.

WAN (Wide Area Network)

Wide Area Network cakupannya lebih luas dari MAN.
Cakupan WAN meliputi satu kawasan, satu negara, satu pulau, bahkan satu benua. Metode yang digunakan WAN hampir sama dengan LAN dan MAN.

Tugas Jaringan Komputer 1

Rabu, 06 Januari 2010

A.Pengertian
a.Unicast
alamat yang menunjuk pada sebuah
alamat antarmuka atau host, digunakan untuk komunikasi satu lawan satu. pada alamat unicast
dibagi 3 jenis lagi yaitu: alamat link local, alamat site local dan alamat global.
alamat link local adalah alamat yang digunakan di dalam satu link yaitu jaringan local yang
saling tersambung dalam satu level. sedangkan alamat Site local setara dengan alamat privat,
yang dipakai terbatas di dalam satu site sehingga terbatas penggunaannya hanya didalam satu
site sehingga tidak dapat digunakan untuk mengirimkan alamat diluar site ini.
alamat global adalah alamat yang dipakai misalnya untuk Internet Service Provider.

b.Anycast
alamat yang menunjukkan beberapa interface (biasanya node yang berbeda).
paket yang dikirimkan ke alamat ini akan dikirimkan ke salahsatu alamat antarmuka yang paling
dekat dengan router. alamat anycast tidak mempunyai alokasi khusus, karena jika beberapa
node/interface diberikan prefix yang sama maka alamat tersebut sudah merupakan alamat anycast.

c.Multicast
alamat yang menunjukkan beberapa interface (biasanya untuk node yang
berbeda). Paket yang dikirimkan ke alamat ini maka akan dikirimkan ke semua interface yang
ditunjukkan oleh alamat ini. alamat multicast ini didesain untuk menggantikan alamat broadcast
pada IPv4 yang banyak mengkonsumsi bandwidth.

d.Broadcast
Proses pengiriman data satu arah. Pengiriman data satu arah ini tidak memerlukan repon balik dari penerimanya. Biasanya dipakai pada penyiaran gelombang radio, televisi, serta penyebaran lainnya.

Ciri-ciri dari :

1.RIP
RIP Versi 1
• Dokumen –> RFC1058.
• RIP V1 routing vektor-jarak yang dimodifikasi dengan triggered update dan split horizon dengan poisonous reverse untuk meningkatkan kinerjanya.
• RIP V1 diperlukan supaya host dan router dapat bertukar informasi untuk menghitung rute dalam jaringan TCP/IP.
• Informasi yang dipertukarkan RIP berupa :
a. Host
b. Network
c. Subnet
d. Rutedefault
2. RIP Versi 2
• Enhancement dari RIP versi1 ditambah dengan beberapa kemampuan baru,
• Algoritma routing sama dengan RIP versi1,
• Bedanya terletak pada format dengan tambahan informasi yang dikirim,
• Kemampuan baru :
a. Tag –> untuk rute eksternal.
b. Subnet mask.
c. Alamat hop berikutnya.
d. Autentikasi.

2.OSPF
OSPF merupakan interior routing protocol yang kepanjangan dari Open
Shortest Path First. OSPF didesain oleh IETF ( Internet Engineering Task Force ) yang pada mulanya dikembangkan dari algoritma SPF ( Shortest Path First ). Hampir sama dengan IGRP yaitu pada tahun 80-an.
Pada awalnya RIP adalah routing protokol yang umum dipakai, namun ternyata untuk AS yang besar, RIP sudah tidak memadai lagi. OSPF diturunkan dari beberapa periset seperti Bolt, Beranek, Newmans. Protokol ini bersifat open yang berarti dapat diadopsi oleh siapa pun. OSPF dipublikasikan pada RFC nomor 1247. OSPF menggunakan protokol routing link-state, dengan karakteristik sebagai berikut:
• Protokol routing link-state.
• Merupakan open standard protokol routing yang dijelaskan di RFC 2328.
• Menggunakan algoritma SPF untuk menghitung cost terendah.
• Update routing dilakukan secara floaded saat terjadi perubahan topologi jaringan.
• OSPF adalah linkstate protokol dimana dapat memelihara rute dalam dinamik network struktur dan dapat dibangun beberapa bagian dari subnetwork.
• OSPF lebih effisien daripada RIP.
• Antara RIP dan OSPF menggunakan di dalam Autonomous System ( AS ).
• Menggunakan protokol broadcast.
-EIGRP
EIGRP menggunakan protokol routing enhanced distance vector, dengan
karakteristik sebagai berikut:
• Menggunakan protokol routing enhanced distance vector.
• Menggunakan cost load balancing yang tidak sama.
• Menggunakan algoritma kombinasi antara distance vector dan link-state.
• Menggunakan Diffusing Update Algorithm (DUAL) untuk menghitung jalur terpendek.
note:
• Pada penggunaan EIGRP menggunakan autonomous sytem yang disebut sistem routing.
• router - router yang berada dalam suatu autonomuos sytem yang sama disebut Gateway Protocol (IGP)
• Routing didalam satu subnet dengan outonomous yang sama disebut system routing.
• Routing diantara dua subnet yang berlainan dengan autonomous system yang sma disebut interior routing.
• Jika router yang berada dalam suatu autonomuos system berhubungan dengan router lain,jenis protokol routing yang mengatur disebut Exterior ateway Protocols (EGP)

3.IGRP
IGRP merupakan distance vector IGP. Routing distance vector mengukur
jarak secara matematik. Pengukuran ini dikenal dengan nama distance vector. Router yang menggunakan distance vector harus mengirimkan semua atau sebagian table routing dalam pesan routing update dengan interval waktu yang regular ke semua router tetangganya. Isi dari informasi routing adalah:
• Identifikasi tujuan baru,
• Mempelajari apabila terjadi kegagalan.
IGRP adalah routing protokol distance vector yang dibuat oleh Cisco. IGRP
mengirimkan update routing setiap interval 90 detik. Update ini advertise semua jaringan dalam AS. Kunci desain jaringan IGRP adalah:
• Secara otomatis dapat menangani topologi yang komplek,
• Kemampuan ke segmen dengan bandwidth dan delay yang berbeda,
• Skalabilitas, untuk fungsi jaringan yang besar.
Secara default, IGRP menggunakan bandwidth dan delay sebagai metric. Untuk konfigurasi tambahan, IGRP dapat dikonfigurasi menggunakan kombinasi semua varibel atau yang disebut dengan composite metric. Variabel-variabel itu misalnya:
• Bandwidth
• Delay
• Load
• Reliability
IGRP yang merupakan contoh routing protokol yang menggunakan algoritma distance vector yang lain. Tidak seperti RIP, IGRP merupakan routing protokol yang dibuat oleh Cisco. IGRP juga sangat mudah diimplementasikan, meskipun IGRP merupakan routing potokol yang lebih komplek dari RIP dan banyak faktor yang dapat digunakan untuk mencapai jalur terbaik dengan karakteristik sebagai berikut:
• Protokol Routing Distance Vector.
• Menggunakan composite metric yang terdiri atas bandwidth, load, delay dan reliability.
• Update routing dilakukan secara broadcast setiap 90 detik.

4.BGP
Border Gateway Protocol disingkat BGP adalah inti dari protokol routing internet. Protocol ini yang menjadi backbone dari jaringan internet dunia. BGP adalah protokol routing inti dari internet yg digunakan untuk melakukan pertukaran informasi routing antar jaringan. BGP dijelaskan dalam RFC 4271. RFC 4276 menjelaskan implementasi report pada BGP-4, RFC 4277 menjelaskan hasil ujicoba penggunaan BGP-4. Ia bekerja dengan cara memetakan sebuah tabel IP network yang menunjuk ke jaringan yg dapat dicapai antar Autonomous System (AS). Hal ini digambarkan sebagai sebuah protokol path vector. BGP tidak menggunakan metrik IGP (Interior Gateway Protocol) tradisional, tapi membuat routing decision berdasarkan path, network policies, dan atau ruleset. BGP versi 4 masih digunakan hingga saat ini . BGP mendukung Class Inter-Domain Routing dan menggunakan route aggregation untuk mengurangi ukuran tabel routing. sejak tahun 1994, BGP-4 telah digunakan di internet. semua versi dibawahnya sudah tidak digunakan. BGP diciptakan untuk menggantikan protokol routing EGP yang mengijinkan routing secara tersebar sehingga tidak harus mengacu pada satu jaringan backbone saja.

sumber:
vienskakonsultanIT.wordpress.com
Universitas-Sriwijaya.com

The World Of Dreams Copyright © 2009 Designed by Ipietoon Blogger Template for Bie Blogger Template Vector by DaPino